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Abstract 

This work presents a method for multicomponent seismic 
data registration using initial estimated velocities and a 
subsequent fine-tune adjustment using dynamic time 
warping. While the first part can be solved purely in an 
analytical manner, the time warping process requires a 
dynamic approach. Tests were conducted using synthetic 
data modeled using Zoeppritz equations, with different 
approximations for velocities and different levels of 
random noise. The results show dynamic time warping as 
a promising tool for data registration, as long as a first 
approximation can bring the events on both datasets 
reasonably close together, as demonstrated by our 
synthetic data examples.  

Introduction 

For the last couple of decades, multicomponent seismic 
data using converted waves has been used to improve 
AVO analysis and reservoir monitoring. Although being 
object of study for some time (STEWART, 1990; 
LARSEN, 1999; WANG, 1999; HAMPSON et al., 2005) 
multicomponent AVO joint inversion still presents us with 
technical challenges, from which we highlight the 
registration of PP and PS events. Compressional waves 
travel faster than shear waves, a reflector shown at a 
particular time on PP data will be registered at a later time 
on the PS data. Since the simultaneous AVO joint-
inversion is done at each particular time (HAMPSON et 
al., 2005), it is essential that the same event is shown at 
the exact same time on both data sets. 

The multicomponent data registration usually is done with 
the interpreter’s experience on recognizing the 
corresponding horizons on both data sets. Hardage et al. 
(2011) list various techniques to properly tie the converted 
wave data to the compressional wave data. One of them 
consists on a method which employs the compressional 
and shear wave velocities, α and β, to make a first-order 

adjustment, then a second step must take place, where 
the interpreter must recognize the similar events on both 
data and tie them together. Or one could use a numerical 
method for fine-tuning image registration, such as the one 
proposed by Fomel and Backus (2003). Hale (2012) 
proposed a method called dynamic image warping, based 
on a well-known speech recognition algorithm called 
dynamic time warping (BERNDT and CLIFFORD, 1994), 

suggesting that it could indeed be used for fine-tuning PP 
and PS data registration.  

In this work we describe a necessary sequence of steps 
to put both PP and PS data on the same time domain (PP 
time), aligning the events on both data sets, placing them 
at the exact same time. We shall present the methods 
and the application on a synthetic data, based on a real 
log data, modeled using Zoeppritz equations, with 
different levels and types of random noise. 

Time domain conversion at zero-offset 

Given a horizontally layered half-space, and each layer 
being homogeneous and isotropic, one can easily find the 
relationship between interval times (ΔtPP and ΔtPS) and 
interval velocities (α(int) and β(int)) at a layer of index j: 
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We can rewrite equation 1 in terms of the interval 

velocities ratio, 
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Ursenbach et al. (2013) have shown that we can use 
either interval velocities ratio (equation 2) or the average 
velocities ratio 
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which is more convenient, because allows us to convert 
the times directly, instead of having to work with time 
intervals. Since γ

(avg)
 can be computed directly from γ

(int)
 

(GAISER, 1996), equation 3 allows us to directly convert 
the PS data, originally recorded in PS time domain, into 
PP time domain. 

This first-order adjustment heavily depends on the quality 
of the velocities, and often only processing velocities are 
available. Since processing velocities are not necessarily 
equal to the real velocities (AL-CHALABI, 1994), using 
this kind of velocities to convert PS data into PP time 
domain most likely will not produce a satisfactory 
alignment. That’s why a fine-tuning algorithm is important, 
and the one we chose will be presented next. 
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Dynamic time warping (DTW) 

Let’s consider two distinct time series - A and B - and 

assume they have similar events, but they are registered 
in different times. Our task is to warp one of these series 
in order to align its events with the events from the other 
series. Considering that A and B series have n and m 

elements respectively, such that 

 
ni aaaaA  ..., , ..., , , 21 , 

mj bbbbB  ..., , ..., , , 21 . 
(4)  

We can compute the absolute difference between each 
term of both series (equation 5), resulting in a matrix of 
n×m dimensions.  

   jiji baba , . (5)  

This δ function quantifies the proximity of both series at all 

times. There can be variations of this equation, such as 
the squared difference between elements, which 
sometimes is called as the distance between them.  

We can formulate time warping problem as the being the 
minimum path over the cumulative differences (BERNDT 
and CLIFFORD, 1994): 
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where wk represents a coordinate (i, j)k from the warping 

path, as shows Figure 1. 

The warping path typically has conditions and constraints, 
such as continuity and monotonicity (KEOGH and 
RATANAMAHATANA, 2005), meaning that there cannot 
be gaps on the warping path, and it can only move 
forward in time. To improve the algorithm performance 
and avoid extreme distortions, we can also impose a 
warping window constraint (BERNDT and CLIFFORD, 
1994), which is represented in Figure 1.  

In order to find the path which minimizes the difference 
between both series, usually a dynamic programming 
approach is used, evaluating the following recursion: 

        ,,1min[,, jibaji ji    

   ]1, ,1,1  jiji  , 

(7)  

where δ(ai, bj) is the absolute difference between ai  and 
bj, and λ(i, j) is the sum of the difference between both 

elements and the minimum cumulative difference from the 
3 adjacent elements. There are only three possibilities 
because of the continuity and monotonicity constraints. 

The dynamic image warping method, proposed by Hale 
(2012), is a slightly modified version of the dynamic time 
warping algorithm, applied to an entire seismic section, 
dealing with each trace individually. This slightly modified 
version of DTW allows only smoother distortions by 
limiting the strain over the warping path (stretch or  

 

  Figure 1: Warping path defined by the smallest absolute 
difference between series A and B. 

squeeze). For each horizontal or vertical segment on the 
warping path we have a stretch or squeeze of 100% on 
one of the series, which is usually unreasonable. The 
proposed algorithm uses a ratio factor which imposes 
that, for each horizontal or vertical distortion, there will 
have to be x segments without distortion (i.e. diagonal 

segments). The proposed method also optimizes the 
process by computing the differences only inside a range 
of time lags, which is equivalent to compute the 
differences only in between the constraints shown in 
Figure 1. The smaller the range of lags, the smaller is the 
possibility of distortions. This particular feature is really 
attractive since our series are expected to be quite similar 
after the first-order corrections made with the velocities 
ratio γ. Considering that DTW is a purely mathematical 

method, with no regards for the medium’s physical 
properties, restraining the amount of allowed distortion is 
also a safer choice. 

Synthetic data examples 

Using real set of well data we have modeled synthetic 
CDP gathers for both PP and PS data, using Zoeppritz 
equations. Their CDP stacks are shown in Figure 2, with 
the same time scale. Notice the reverse polarity of PS 
data when compared with PP data, which means we will 
have to revert it’s polarity before applying the time 
warping algorithm. 

The α/β ratio γ used to create the model is displayed in 

Figure 3, as are the approximations used in the first-order 
adjustment. These approximations were created using a 
low pass filter by a truncated series of cosines, one of 
them using 10 terms, and the other using only 3 terms. 
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These two approximations are used to simulate the ratio 
of interval processing velocities, to be used as a first-
order adjustment. 

 

Figure 2: Synthetic PP and PS traces registered in their 
respective time domains. 

 

Figure 3: Original γ
(int)

 computed from well logs (black), 

and two low pass filtered versions, one using 10 terms 
(blue) and the other 3 terms (red), for simulating a γ

(int)
 

ratio obtained from processing velocities, used for the 
first-order adjustment. 

Results 

Using the models described in the previous section, we 
first converted the synthetic PS data from PS time domain 
to PP time domain using the 10 term γ (Figure 3), 

applying it into equation 3. Figure 4 shows the original PP 
data compared to this first-order approximation of PS 
data, called PS (tpp). Notice the misaligned events shown 

in detail, as indicated by the red and green dotted lines. 

We then applied the time warping algorithm, resulting in 
the third trace, called PS(w(tpp)). As Figure 4 show, the 

marked events were then aligned by the warping 
algorithm. In fact, the correlation coefficient between the 
two series improved considerably, going from 33.35% 
between PP and PS(tpp), to 94.12% between PP and 
PS(w(tpp)). 

Using the 3 term approximation for γ to simulate poorer 

processing velocities, we’ve obtained the results shown in 
Figure 5. The time domain conversion did not succeed to 
bring the corresponding events of the PS data to a time 
sufficiently close to the ones in PP data. With a poor first-
order conversion, the subsequent application of the 

dynamic time warping method could not align the events 
correctly.  

Considering once again the adjustment made with the 10 
term γ, we inserted different levels of random noise and 

then have observed the correlation coefficients to drop as 
the noise level was raised. Figure 6 shows four different 
situations, each one with a different level of noise. The 
level of noise represents the percentage of the maximum 
value of each particular time series. Random values 
within this noise range were then added to the series to 
observe how it would affect the correlation coefficient.  

 

Figure 4: PP and PS data after the first-order adjustment 
made using the 10 terms approximation of γ, and then 

after DTW. In the detailed view (Figure 4 bottom) we can 
see the two events marked in red and green corrected by 
the warping technique. The polarity of PS data was 
already reverted to match the PP data polarity. 

Conclusions 

The results show that dynamic time warping is a 
promising technique to perform fine-tuning adjustments in 
the multicomponent seismic data registration, provided 
that the first-order PS to PP time conversion using the 
velocities ratio has already been performed, and the 
events on both series are sufficiently close to each other. 
As Figure 5 has shown, a poor first-order approximation 
will most likely ruin any chance that DTW have to 
correctly align events on both datasets. When trying to 
use the time warping method directly, before any 
adjustment with γ, the results became unpredictable. 

Preliminary studies have shown that this problem could 
be avoided by including an intermediate step of manual 
event picking, which would be used to tie together 
horizons according to the interpreter’s recognition of 
corresponding events. This step should be done before  
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Figure 5: PP and PS data after the first-order adjustment 
made using the 3 terms approximation of γ, and then 

adjusted using DTW. Notice the poor first-order 
adjustment and it’s reflection on the following time 
warping adjustment. 

 

  Figure 6: Different noise levels generate different 
correlation coefficient. As expected, the correlation 
coefficients get worse as the noise levels increase.  

 

the application of the time warping method, which would 
be used just as a fine-tuning adjustment tool. 
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